N64- 27805

/

fTHRU)

(PAGES)

-BL254

(INASA CR OR TMX OR AD NUMBER)

(CODE)

FACILITY FORM g02

{CATEGORY)

W__ﬁ__‘ e e

i FELINE TRy
o TR ¥ AR 0555 BN s 5 S M Gl AT i .25 B
TR ey nmammwnmmummm

OTS PRICE
$

MICROFILM

L R L T ST i P SRR R




CENTER FOR RADIOPHYSICS AND SPACE RESEARCH
CORNELL UNIVERSITY '
ITHACA, NEW YORK -

May, 1962

CRSR 117

MAGNETIC EFFECTS OF GEOMAGNETICALLY TRAFPPED
PARTICLES

Martin Lester Dwarkin




ACKNOWLEDGEMENTS

This problem was proposed by Professor T. Gold to whom I am also indebted
for helpful éﬁggestions. I am grateful to Professor H. Bondi for valusble
discussions. I also wish to express my thanks to Mr. G. Petznick for his
assistance during the initial stages of programming for the Burroughs 220 at
the Cornell Computing Center and to Dr. J. C. Cain for making available to
me the computing facilities of thg Goddard Space Flight Center where the
final calculations were carried out on an IBM 7090. The work was supported
by grants from the Air Force Office of Scientific Research (AF49(638)-915)

and from the National Aeronautics and Space Administration (NsG 184-60).

iii.




TABLES OF CONTENTS

I. FORMULATION OF THE PROBLEM
IT. ANALYSIS
A. Basic Equations
1. The Geometry of a Dipole Field

2. The Motion of Charged Particles in an Inhomogeneous
Magnetic Field

B. Magnetic Effects of Trapped Particles
1. The Drift Current Field

a. The Scalar Magnetic Potential of a Circular
Current Loop

b. The Particle Distribution
c. The Drift Current Density j(a,0')

d. The Magnetic Field Due to the Drift Motion
of Trapped Particles

2. The Gyration Field

8. The Scalar Magnetic Potential of a Region of
Magnetic Polarization

b. Magnetization of the Trapping Region

c. The Magnetic Field Due to the Gyration of
Trapped Particles around Lines of Force

3. Approximating the Field Components at the Earth's
Surface

ITI. CONCLUSIONS

IV. APPENDIX A - Numerical Integration of Magnetic Field
Components

V. APPENDIX B - Solution of Poisson's Equation in Source Free
Space

iv.

N

U1

10

12

13

15
1k

15

15

21

26

29



vI.

VII.

VIII.

TABLES
FIGURES
BIRLIOGRAPHY

Page
31
36



I. FORMULATION OF THE PROBLEM

Following solar flare activity there is an enhancement of trapped particles
in the geomagnetic field (Van Allen and Lin, 1960) and a simultaneous occurrence
of magnetic storms. It was suggested by Singer (1957) that the main phase of
magnetic storms might originate in the motion of geomagnetically trapped solar
particles, and Dessler and Parker (1959) showed in a semi-qualitative way that
trapped particles can possibly account for the average features of storms.
Besides the existence of trapped particles in the Van Allen belt, observations
have been made which indicate the presence of trapped particles beyond 5 earth
radij: (Smith, et al., 1960), (Sonnet, et al., 1960).

.It is of some interesﬁ tb be able to calculaté the magnetic field produced
by the motion of geomagnetically trapped particles. However, the present lack
of information about the disposition of trapped particles and the complexity of
the earth's field set severe limits on any attempts at a detailed analysis of
the magnetic effects of trapped radiation, and therefore, only a relatively
simple, mathematically tractable approximation can be attempted. Akasofu and
Chapman (1961) calculated the magnetic field disturbance in the equatorial
plane fof a vériety of particle distributions in the trapping region, and
Akasofu, Cain,and Chapman (1961) calculated the field everywhere in space for
a particular distribution.‘ Ehe"discussion which follows describes a means of
calculating the field due to‘an arbitrary distribution of trapped particles
at a point which is not in the trapping region.

Consider the following idealized situation. Egqual numbers of positively and
negatively charged particles are permanently trapped in the field of a magnetic
dipole located at the center of a spherical, non-magnetic earth (sée Figure 1).

We ignore the diamegnetic effects of the earth and macroscopic electric fields in



the trapping region. We make no attempt to include the effects of the particle
trapping mechanism or the way particles are lost from the trapping region.
Since, in fact, particles with mirror points in or below the earth’'s atmosphere
are very quickly lost from the trapping region, we assume that the motion of
trappéd particles is restricted so that none enter the atmosphere which is
assumed to be uniformly 1200 km deep (Johnson, 1960). Moreover, we suppose that
the energy density U of the trapped particles is less than the energy density of
the trapping field B, i.e.;, U« B2/8:r:° This assumption will justify the use of
dipole field equations when analyzing the motion of trapped particles. ﬁcw

the energy is distributed among the individual particles is irrelevant since
only the total energy and its spacial distribution are important for calculating
the magnetic field. Of course, we cannot have a few particles of such high
energy that the adiabatic approximation bresks down or so many low energy
particles that collisions become important.

When considering the motion of an individual particle, we assume that its
instantaneous center of gyration always remains on the same dipole shell,
thereby disregarding the effects of particle motion from shell to shell. The
adigabatic invariance of the magnetic moments of the particles is taken for
granted throughout the discussion.

In attempting to calculate the magnetic effects of trapped particles, we
can resolve the motion of the particles into several components by virtue of
the adiabatic approximation and look at the field implied by each. TFirstly, a
trapped particle moves in & helical path along a field line, the pitch of the
helix growing flatter with increasing field strength (see Figure 1). At some
point the field becomes so strong that the particle léses its component of
motion along the field line and then "mirrors", i.e., starts back toward

the region of weakest field. It continues beyond the point of weakest field



until reflection occurs again. The helical trajectory can be further apalyzed
into a circular motion around the particle's guiding center (i.e., the
instantaneous center of gyration) and the oscillation of theiguiding center
between mirror points. At the same time, as a result of the curvature of
the field lines and the inhomogeneity of the field, the particles drift arocund
the earth, positive charges moving westward and negative charges moving east-
ward. The oscillatory motion has no net magnetic effect. On the other hand,
the drift of the particles creates & ring current around the earth while the
gyration motion results in a magnetic moment per unit volume in the trapping
region. It is to these two sources of the magnetic disturbance field that
we shall direct our attention.

Before beginning the analysis, a few remarks about notation are in order.
We shall use B to denote the trapping field and H to indicate the field pro-
duced by the motion of the trapped particles. When discussing the disturbance
field, we also adopt the convention that primed coordinates refer to source
points while unprimed coordinates refer to field points, unless otherwise
stated. Thus field points of the trapping field are primed since they are
source points of the trapped particle field. In addition, the subscripts D
and G refer to drift current field and gyration field quentities respectively.
Note also that, unless otherwise stated, physical quantities are measured in

Gaussian units.



II. ANALYSIS

A. Basic Equations

We begin by presenting some of the geometric properties of a dipole field
as well as relevant equations of motion of the trapped particles. Although the
region in which charged particles are trapped is originally a dipole field,
the eventual presence of trapped particles guaresntees that the field will be
distorted. However, we assumed that U << Be/8ﬂ (or equivalently that the
field is not distorted much),and so use the gquations for an unperturbed dipole
field. The distortion of the field at the earth's surface is, in fact, never
very large.

1. The Geometry of a Dipole Field

In spherical polar cobrdinates the potential due to a magnetic dipole

with its north pole points in the negative z direction is

- ' N (1)

where M is the magnetic moment of the dipole, ©' is the colatitude of the field
point, and r' is the distance to the field line. The resulting axially

symmetric field has components

R (2)
__ Mune'
B, =- fexe (5)

and magnitude

B=1Bl=8 §l+3m19')l/l

2

- ki
oo (+)

B being the equatorial value of magnetic induction on the field line in
e

question.



The equation of a dipole field line is
r'= a,,dm,lel (5)
where the parameter, a, represents the equatorial distance from the dipole to
the field line., Hence, the differential element of arc length along a line of
force is

ds = asing 1+ 3ca?e)’* 4o’ (6)

and its radius of curvature is

3
0 racete’)*

o A
(1 + con?8")

R =

Gl-

(7)

Equations (3) and (4) can be used to write B in terms of B , the equatorial value
o

of the field at one earth radius, vis.,

3
K, (|+3m’9')y“
a® wnt6’

B=B, (8)

where Re is the radius of the earth in centimeters.

2. The Motion of Charged Particles in an Inhomogeneous Magnetic Field

Much has been written about the equations of motion of a charged
particle in exterﬁal fields (e.g., see Alfven (1950)), .and a concise review of
the subject is given by Spitzer (1956). Therefore only pertinent results will
be included here.

A particle of mass m and charge q in a magnetic field B has a cyclotron

frequency

(9)

where q is measured in electrostdtic units. Under the influence of external

o, :-LB—
me

forces, particles in a magnetic field will drift‘in & direction perpendicular to
both the megnetic field and the external force. In the case of the geomagnetic
field, particle drift is primarily due to the inhomogeneity of the field along

equipotentials and to the centrifugal force the particles experience as they move



along the curved lines of force. The drift velocity due to the field gradient is

28 * (10)

and the drift velocity Que "to the curvature of the lines of force is

2
= M :
Yo = Reo, (11)

where § is the radius of gyration of the particle, and w, is its cyclotron
freguency. W, and w, are respectively the perpendicular and parallel components

of the particle's velocity w with respect to the field. Equation (10) is appli-

cable only if W. B, the gradient of the scalar B normal to B, is small compared
to B. In the interest of simplicity we assume that v X B ~ O in the trapping

region (i.e., the distortion of the trapping region is small), in which case the

total drift velocity can be written as

- _ | 2 2
Vo = Wre+ oy = 2lo (Lt vt (12)

let o be the pitch angle of the particle, i.e., the angle between the
instantaneous velocity vector of the particle and the local magnetic fielda. 1If

: 2
we define u as the kinetic energy of the particle (u = 1/2 mw ) and set

u, = (4 sin?a + e 2 ) w

(13)
then Equation (12) for the drift velocity becomes
_2c '
Wy = =5 Uy (14)
§
where
W=l (15)

Using (7) and (8) we arrive at the expression

W, = beat MJG'(HMQQ') u
DT 28,8 (1+3ce’e)? P (16)




One more relation we shall find useful follows immediately from the

adiabatic invariance of the magnetic moment

/:w;_m:i

8 (17)

and the assumption that the kinetic energy of the particles is constant, vis.,

. 2
am=o
—5 = consl, (18)

B. Magnetic Effects of Trapped Particles

As we mentioned earlier;the main forces the trapped particles experience
arise from (i) the motion of the particles normal to the magnetic field, (ii)
the inhomogéneity of thé field along equipotentials, and (iii) the curvature of
the field lines.‘ The magnetic effect of (i) is calculated by introducing a
scalar potential for the magnetic field oﬁtéide the trapping region written in
terms of an intensity of magnetization. The forées due to (ii) and (iii) cause
the particles to drift around the geomagnetic axis, and the magnetic field of
the resulting ring current is also described in terms of a scalar potential.

The magnetic effect of the drift motion 1s examined first.

1. The Drift Current Field

If we view %he drift motion of the parficles as a current in the
trapping region, then tﬁe charge density is proportional to the trapped particle
density° Both the partiéle density and drift velocity are functions of the
energies and local pitch angles of the trapped particles. Since the drift
velocity in the axially symmetric magnetic field of the earth is independent
of the azimuthal angle g, the drift current can be treated as a continuous
Qistribution of circulaf current loops which lie‘in planes perpendicular to the

geomagnetic axis with their centers on the axis. The direction of the current

is westward around the earth. .




a. The Scalar Magnetic Potential of a Circular Current Loop

et d”fIDA be the magnetic scalar potential at the point A on
the axis of a loop of current density j(r', ©'). Referring to Figure (2) we
let h be the distance from the origin O to the field point A. In terms of the

ordinary Legendre -polynomials P, (cos 8'),

(19)

)”‘*' 2, b (me) is

J_Q -JJTJU» ')z (o

where 4% 1is the cross-sectional area of the current loop. For fixed r' and @'
the potential at an arbltrary field point P(r, o, ¢) is therefore
,,J_QD( A, 6)= 2T (A ) (I-cont’) d T
A
- —U’J(/L,e)z () wing' Pleno) P(ag)dS (20)

when |r] « r' (Ferraro, 1954).
It proves convenient to use the quantities "a" and @' rather than r' and

©' as the independent variables, in which case (éO) becomes
al.QD(ﬁ- a,8')= a4 (a, POIGES DY DX , (21)
-amy ae)z () b (me) P (cee)d S

‘J.Ml

In order to calculate the current density of particles j(a, ©') we must
consider how particles are distributed in the trapping region.

b. The Particle Distribution

Swenn (1933) has showﬂ thet for a system of N charged particles
in the presence of an éxterﬁal magnetic field, the 6N dimensional phase space
density is constant along the trajectory of a system point in phase space. If
the particles are mutually non-interacting, then the Hamiltonian of the system can
be written as the sum of the Hamiltonians of the individual particlesyand this

implies that the phase space density in a 6 dimensional phase space is constant




along the trajectory of the phase point of a particle. Moreover, if the kinetic
energy of each particle is constant, then the directional differential intensity
in ordinary configuration space is constant. Since we have in fact assumed
that collisions are rare and V x B is small in the trapping region, the above
result is applicable to the present problem and provides a means of inferring
the particle density everywhere on a dipole shell from the equatorial particle
energy density and pitch angle distribution.

Let dS be an area oriented so that its normal is in the direction of motion
of the particle. Then the directional differential intensity I is the number
of particles per unit areea per unit energy per unit time per unit solid angle

(centered around the direction of motion of the particle), i.e.,

dN
I= = conadarl
dS dw JE At (22)
The solid angle dw is measured in terms of the azimuthal angle ¥ of the
particle around the local field line and the pitch angle a.
Moreover, the number of perticles per unit volume per unit solid angle

per unit energy at the point (a, ') is then

T(a,w, e
Pla,w,E)= —;‘fﬁ— (23)

I andr are implicitly functions of @' since @ = @(6'). Consequently, 2 is
constant in the neighborhood of a particle as it moves through the trapping
region. Note that this does not say that the particle density integrated
over all pitch angles and all energies is constant thoughout space. This
will be true only if the pitch angle distribution is isotropic. What is
always the case, however, is that we can calculate the total particle density
at every point on the dipole shell from the value of the integrated P in

the equatorisl plane.
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We shall asumme that I (&, w, E),and therefore p (a, w, E),are independent

of the azimuthal angle ¢ . 1In general I and p vary with pitch angle a.

Parker (1957) suggested a simple class of distribution functions ﬁhich in our

(£-1)/2 £-1

notation are of the form I(a,wE) a:(Be/B) sin a. If we assume

that £ = 1, then we have & velocity distribution which deviates from isotropy
only to the extent that particles which fail to satisfy the mirror point
restriction set by the atmosphere are absent. This distribution shall be

referred to as modified isotropy.

c. The Drift Current Density j (a, ©')

The differential ring current density around the earth resulting

from the drift motion of trapped particles is
] ! - -

where q is the charge of the particles in esu, and c is the speed of light.
On substituting Equation (16) for the drift velocity into the above expression

and integrating over all enefgies and all allowed pitch angles we get

2

LN b a ain® e’ Uredte’)
fla,e)= B, Ry (1+3cmre)? 4 (25)
where
ub.-.JJEfij(&JQ)) E) “4, dw (26)

and uD,is given by Equation (13).
To digress for a moment;UD‘can be written in terms of the energy density

U of the trapped particles. In general

U(o.)e')=fsdeﬂp(z,w,e)dw (27)

and assuming modified isotropy this becomes

Uta, o) = #m eea,, p(&) (28)
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where
plr=[epte, 0 4 )

and & in is the minimum pitch angle a particle can have consistent with the

requirement that the implied mirror point be above the atmosphere. It is con-~
venient to write U(a,8') in terms of U = U (ao, 1:/2), the equatorial particle
energy density on fhe field line specifiedAby a,. Thus

Y1 cod Opmin (2, 69 Bl
BT Cod Kpin (25,7/2) B (40)

In Figure (3) cos ¢ (n/2, &) is plotted as a function of "a". We rewrite

Ue, o) = U™ (a0, /) (30)

Equation (30) as

Utap) = ertdt,, (a,6) 131((4 — W(a,, /1) (31)
where p(t)
and B(%%) = m)

Y(8,) = o i, (4,7/2) (32)

To return now to the main line of argument,integrating Equation (26) over «

and ¢, we then get

Upla, s ——(H--Lm Kpnin.) U (2,8") (33)

Finally, we calculate cos Qin
Let ra'tm be the distance from the center of the earth to the level of the
atmosphere above which particles can mirror.” From (5), the minimum colatitude

accessible to a particle is

pia) = sin (g, /a)" (34)

Using (8), (18)pand (34),we then have

; !
(Haw,_a,)/.z“ I~ ]/a.

X ="
—“‘ [ aint g! a*(4a2-3anry )/~

(35)
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d. The Magnetic Field Due to the Drift Motion of Trapped Particles

Let

mpt i
b, = 27 jla,6) 2 (g) %)- (36)

Then the potential due to the drift motion of the particles given by Equation
(21) becomes
o
1) - q AYSS I -— i ”
40, (2)0,6) =27 j@,e)(-0e8)dZ=5 b 2™ P (e 6) 5

m=}

(37)

Integrating over the entire trapping region gives the magnetic potential due

to all the trapped particles

a, T-p(e)
.QD(AJo)=J da ) ""j(a,e’)(i-me’)
2, '7(0. 00 .
—Z b, A" Pm(we)]l—w—l de’ (38)
mn=i a un” 6 :
where J (a,0',g') is the Jacobian determinant.
Since
H=- v_()_D (39)

the components of the magnetic field for r <« rat arising from the drift
m

motion of the trapped particles are

A, Tr-'}’(l_) 00 o
H=] 4 S MO ALYV N
‘J" ‘7{» [ 2 ] s (50)
and
6, Toye) ,
; ) = mr d Fplcoe)] [ T(a,0'¢') |
H = |da b, ~ NAA Ladyp
t J; v[«)[; de @ 4in’ o (41)

If we measure "a&" and r in units of earth radii and use Equation (25) for

the current dehsity, the‘drift field components become
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2y M=) w
pof 5 mtes b

a e s
and
a, 77—'7(..) o0 . .
H, =~ Jo./ [ngﬂm-le(ms)]Jol (43)
& ) e
where

i
bh=__7.7’ 3ain’y (1+coe?s’) ﬂ;(myi_‘ )
(14+3c40%0") (atin?s’) (4h)

la
m
8

The evaluation of (42) and (43) is considered in Appendix A.

2, The GyrationhField'

The gyration of trapped particles around lines of force results in a

net magnetic momentrper unit volume in the trapping region. The potential due
towthe‘glignment of the axes-of gyration of the particles antiparallel to the
earth's field is obtained from the solution of Poisson's equation in a source
free region. After deriving a formal expression for the potential due to the
above ﬁagnetic sources, we calculate the intensity of magnetization in the

trapping region and-the equations for the magnetic field components.

a. The Scalar Magnetic Potential of a Region of Magnetic Polarization

If M is the intensity of magnetization in the trapping region,
then the equivalent magnetic source density is v . M and Poisson's equation

becomes

2
v =4 Y (45)
The solution of (45) valid inside a sphere of radius r = roip Which is a

source free region, is

o

Lplho =) b, 2" (o) (46)



1k,

where

m o0
- [ vMP (e’
b,,,,—- 17de9f ) ain 6 dr (47)
0 a, N 7
T,

Equation (46) is derived in Appendix B.

b. Magnetization of the Trapping Region

The adiabatic invariance of the magnetic moments of the particles

permits us to write
oAl - LN
Fg(nlo)_o’JEfIf(AJB’w’E)Jw (48)

as an approximate expression for the guiding center density I ¢
Since each particle has magnetic moment

- U—Mi“ - Up

= B - 8 (49)

the magnetic moment per unit volume is

\M(%a‘)l:—é—f&ﬁjﬂf U'G-P(A'ia_',wJE)MO( det
o o

i (50)
If we assume modified isotropy, then
| = —
[P ] -
'_’1()’)9) B (51)
Where
- 2
Ue =L C-dese?s ) u (52)

Further, the direction of the intensity of magnetization is anti-parallel to

the direction of the local trapping field,and so

1! (53)

(DIIW

M =-

and
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B
THE-G Tl - U7y (54)

If we let L = cos ohin,then the divergence of the intensity of magnetization
is
M= :L‘TT"YU* ﬂ'lL aQ '_ME p
V- = 3B (3-1L )(2/" Bﬂ'w ) )
[

(143cn*8’)

(55)

' 2,/
2 a6 BRteetis’) 2,y
+ 2 I1(|+3m291) (3+6L L )
o I J

c. The Magnetic Field Due to the Gyration of Trapped Particles
Around Lines of Force

The components of the gyration field are easily obtained from

Equation (46) for the potential. They are

ol
M:Z mb, 2" F (e 0) (56)
and
-_Z b, A" fjf(one) (57)
mso
Let
I Ay _i@,_ . ) ) 8
Gorhon =it V- [aene (58)

Then Equation (h?) becomes

b,,L— LdiA ”L* jJ G’(,t:%) P (o’ dr' (59)

The evaluation of (56) and (57) is considered in Appendix A.

3. Approximaﬁiné the Field Components at the Earth's Surface

A satisfactory estimate of the field components at the earth's
surface can be obtained with a first order calculation assuming & centered
dipole trapping field (Akasofu, Cain, and Chapmen, 1961 ). However, this

involves a lengthy numerical solution of the field equations. In view of our
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limited knowledge of the structure of the magnetosphere, still less precise
estimates of the field produced by trapped particles can often provide equally
useful information. As we shall show, an order of magnitude calculation of
the field implied by an arbitrary particle energy density distribution is
readily inferred from the field implied by a particle energy density distri-
bution which is uniform in the equatorial plane and which varies along the
field lines in accordance with a modified isotropic pitch angle distribution.
In practice the calculation depends on two factors. First we must know
the field components due to narrow belts of trapped particles with a uniform
equatorial particle energy density distribution and a modified isotropic
pitch angle distribution. Actually it is better to deal with the dimension-
less quantities I (6) = HtBo/yU* and I (o) = HrBo/yu*. H, end H_ are
respectively the transverse and radial components of the field at colatitude

@ produced by the trapped particles, B_ is the equatorial value of the earth's

o}
field at the surface of the earth, U* is the equatorial particle energy density
of the dipole shell, and y is the cosine of the equatorial pitch angle of a
particle which mirrors at the top of the atmosphere. Ordinarily y = 1 as
Figure 3 shows. Computer calculated values of Ir and It at 10° intervals of
latitude are tabulated in Tables la and 1b for belts which are 0.1 Re wide

in the equatorial plane, where Re is the radius of the earth. The range of

"&" (the equatorial radius of the inner field line measured in earth radii)

in the tables is 1.3 < a £ 4.0 and the entries are accurate to 1%. Because

the field assumes & particularly simple form when a > h, the tabulation ends

at this point. In Figures 4 and 5 Ir and I, are plotted for 1.3£ a £ 2.5

t
in steps of 0.2. We have assumed in obtaining these results that none of
the trapped particles has a mirror point in or below the atmosphere whose

upper limit is 1200 km above the surface of the earth.
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The second consideration in the order of magnitude calculation is the
equatorial particle energy density distribution of interest. This is taken
into account through the relative particle energy density distribution,
B(a,ao). At a = 2 s B (a,ao) - 1 and the value of U at a  serves to specify
U* evefywhere in the equatorial plane. Moreover, the value of y becomes
7(&0) for all "a" when B = B(a, ao). We shall now consider the approximation
in greater detail and consider the errors involved. Finally, we shall give
an exasmple of how the appro#imation procedure is used.

The discussion which follows will refer to the radial component of the
field produced by trapped particles although it applies without change to

the transverse component. The radial component can be expressed formally as
Y

o= [ Flem dafF000) 4o’ (60)
A

The ' limits of integration, which have been suppressed to simplify notation,
are functions of "a". If the particle energy density is uniform in the

equatorial plane, we can write
r+iba N

N *
Ho=y | fﬂ(“)“”":z =L, (61)

(=1 24(éDde

.‘, A

where p = A + Npa. Equation (61) represents the radial component of the
magnetic field at the surface of the earth due to a series of N belts, each
of width 4 & in the equatorial plane with B(a, a) =1

Now to estimate Hr(e) for an arbitrary B(a, éo) on the interval (\,pn),
we multiply”each integral'Iri by any value of E(a, do) on the interval

(M + (i-1) a, A +i a); thus

N
* AR
i () % ¥ (ad :, (a., M2) 2_ B(4:,a,) IA‘_ (6) (62)

)
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Some simplification is possible since particles trapped on dipole shells
for which a 2 4 produce a uniform field inside the earth to an accuracy of
1%; even when 2.5 £ a £ k4, the deviation from uniformity is less than 10%.
This effect will be discussed in greater detail below. We can therefore
write Eqpation (62) as two sums; one represents the contribution of particles
trapped closer than,say,a = 2.5 in the equatorial plane, and the other
represents the contribution of particles trapped beyond a = 2.5.

A further simplification is possible in the case of the distant particle
contribution. That the magnetic field throughout the earth due to trapped
particles is uniform implies that only Pl (cos @) and Pi (cos ) are important,
i.e., the field falls off like 1/a. Since H, oc J/a where J is current,
and the current density j<¢ ﬁ}ﬁ where R is the radius of curvature of the
field line, we have Hr o "g" times the area between dipoles shell. Since
the area between dipole shells is proportional to asa, and » a is constant,

we have H a2. When the proportionality constant is calculated, we have
r

H9= “,:‘:;”’;)Z Floa) Tn (09 2¢ LT ) Flan) o (632)
H,(6) = e a;)gm)ZNaa)I ()4 g LT (d;;/‘)meiﬂa,d) 4 (63b)

where © is the colatitude of the field point.

The pérticle energy density distribution is completely specified by the
pitch angle distribution and B (a,_ao)} hence, these are the only factors we
have to consider in an errorranaxysis. The field implied by trapped particles
is relatively insensitive to the pitch angle distribution. Since the field
is proportional to sin9 ©' where ©' is the colatitude of the source point,
regardless of the pitch angle distribution, the major contribution to the

field integrals comes from the motion of the particles near the equatorial
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plane. The difference between the field due to a modified isotropic distri-
bution and the most extreme deviation from modified isotropy is not greater
than a factor of 3. By way of example, Akasofu, Cain and Chapman (1961)
calculated the field at the surface of the earth due to particles frapped on
dipole shells for which 5 £ a £ 7 with a Gaussian particle energy density
distribution in the equatorial plane and a pitch angle distribution which is
proportional to sinl/2 a, a distribution which emphasizes the role of steep
pitched particles. OQOur calculation for a particle energy density distribution
which differs‘from’theirs only to the extent that we use a modified isotrobic
pitch aﬁéle distributiqn gives a value for H which is one half of their value.

The limitations on E (a, ao) are intimately related to the accuracy of
the estimate and to the width of the belt. If we let B be the absolute value
-of the maximum logarithmic derivative of B (a, ao) on an equatorial interval
of length L, then the error € in the estimates of H_ end H , assuming

t
modified isotropy, satisfies the relation

Lp e (64)
This result follows from the mean value theorems of calculus. The slower
B (a, ao) changes with "a", the better the estimate. Clearly, the total error
made in the estimate can never be less than the 1% error inherent in the
tabulated values of Ir‘and Ito

As an illustration of the approximation scheme, consider a Gaussian

distribéfion B (a, 2.2) = exp (-4 (a - 2.2)2), on the interval 1.6 < a < 3.4
with a modified isotropic pitch angle distribution; B~ 4 and € = 0.7 (70%).
We wish to calculate Hr at colatitude © = BOO, From B (a, 2.2) and Table la

we obtain the first sum in Equation (63a) for 1.6 £ a £ 2.5, vis.,
U*(2.2,7/2)

Y(2.2) B,

197.5
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The second sum in (63a) is

ouf(agﬂw)_7 WX(2,2 1/s)

0 ———d 7

Y(2.2) 8, Y(2.2) 8,

8.0 (o 30

From Figure 3 we see that y = 0.96 and teking B to be 0.31 gauss we have
o

Hr (30°) = 9.3 xlo2 il (2.2) gauss

*
where U (2.2) is measured in ergs/cm;. The computer calculated value is

2
Hr =.8.%5 x 10 U* (2.2) gauss and clearly € < O0.7.



III. CONCLUSIONS

The analysis we have presented and the calculations of the fields at the
surface of the earth due to narrow belts of trapped particles provide a baéis
for discussing some of the magnetic effects of geomagneticélly trapped
particles.

The assumption that the particles are trapped in a centered dipole field
guarantees the symmetry of magnetic sources about the geomagnetic equatorial
Plane as well as about the geomagnetic axis, and therefore the same symmetries
obtain for the magnetic field at the surface of the earth due to the motion of
the particles. Hence, we only have to consider the field along an arbitrary
meridian in one hemisphere. The symmetries of thg magnetic source are exactly
those of sets of coaxial Helmholtz coils.

The axial symmetry permits us to use zonal harmonics and the equatorial
symmetry implies that the even harmonics Po’ 32, “ee contribuﬁe nothing to the
field. The number of odd harmonics needed to represent the field may be found
byﬂexpanding the source factors in the drift and gyration integrals in powers
of cos2 @' and using'the orthogonality properties of Pn (cos ') and Pi
(cos é'), The same information can be obtained from Stieltjes’ bopnds for
ordinary and associated Légéndre polynomials (Sansone, 1959). We conclude
that in general it is not necessary to go beyond P7 (cos ©') and P; (cos 9:).
The number of terms needed in any particular particle distribution depends on
where in the field the particles are trapped and the accuracy desired. Ali
of our calculations include P7 (cos ©') and P% (cos @'), and the results
are accurate to better than 1%.

Figures 4 and 5 illustrate the importance of the various harmonics for
belts which are 0.1 earth radius thick in the equatorial plane and all of which

have the same particle énergy density distribution. We have assumed in the

21,
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calculations that no particles mirror in the atmosphere whose upper limit is
1200 km above fhe surface of the earth. Different pitch angle distributions
will cause éelatively small chsnges in the latitude dependence of the field
components as discussed earlier.

The function It plotted in Figure (5) is proportional to Ht’ the transverse
(horizontal) component of magnetic field at the surface of the earth due to
trapped parficles. The most striking feature of the curves is the general
tendency for the transverse (horizontal) component to increase with increasing
colatitude;which poiﬁts to the importance‘of the Pi (cos ® ) = sin © term. A
significant deviation from this rule occurs at a = 1.7. At large colatitudes
(i.e., low latitudes) the field is approximately constant and the latitude
dependence;gs very sénsiﬁive to "a" around a = 1.7. The constancy of Ht around
a = 1.7 will be of importance when we discuss magnetic storms. As "a'" becomes
larger, the latitude dependence becomes more nearly sinusoidal. In fact, for
a X 2.5 the deviation from & sinusoid is less than 10% and for a 2 4.0 the
deviation is less than 1%.

The function Ir plottediin Figure (4) is proportional to H_, the radial
(vertiéal) componeht of magnetic field at the surface of the earth due to trapped
particles; The radial (vertical) coﬁbonent in general decreases with increasing
colatiéudé,which points“to the importance of the Pl (cos ©) = cos © term.“The
extent to which Hr deviates from a purely cos © dependence4cloéely parallels
the transverse case for a X 2.5.

"1

For "a" sufficiently large (i.e., & 2 2.5) we have H o cos @ and
2 2\
Iﬂzoc sin ©; in other words, H = (‘Hr + Ht) = constant on the surface of the
earth. Now if the field inside the earth due to trapped particles is uniform,

then the field on the surface would be uniform. Since the solution of laplace's

equation is unique (up to an arbitrary constant), the existence of a uniform

field on the surface of the earth implies a uniform field throughout the earth
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due to the trapped particles. Akasofu, Cain, and Chapmen (1961) came to the
same conclusionv}or the field due to particles trapped on dipole shells for
which 5 £ a £ 7.

Since the sources can be viewed as sets of coaxial Helmholtz coils, uni-
formity of the field inside the earth implies that the radius of the earth is
small éompared to the radius of the equivalent Helmholtz coils which make the
greatestrcontribution to the field. That this is,in fact;the case shows up
clearly in the expressions for the megnetic field components which are propor-
tional to sin9 @' for a given value of "a" indicating that particle motion near
the eqﬁatorial plane is the principal source of magnetic'field.

The magnetic field throughout the earth due to geomagnetically trapped
particles can be calculated from measured values of the particle energy density
and pitch angle distributions. A zonal harmonic analysis of the magnetic field
at the surface of the earth in conjunction with the calculated trapped particle
field gives\informatibn about other external sources such as ionospheric currents
and high latitude phenomena as well as information about induced currents inside
the earth.

The zonal harmonic analysis, which in practice is difficult to carry
through, hes been done for magnetic storm date (Slaucitajs and McNish, 1936),
though only to a rough approximation. Furthermore, information about the dis-
position of the trapped particles is rather limited, especially for low energy
particles (i.e., a few kev or less). Rocket measurements in the auroral zone
indicate the presence of large fluxes of 5 kev electrons (McIlwain, 1960) and
it is not unreasonable to suppose that such low energy particles make up a large
part of the trapped particle flux. So far,measurements in the equatorial region
of the geomagnetic field have been confined to electrons with energies greater

than 20 kev (0'Brien, Van Allen, Laughlin, and Frank, 1962). Thus the analysis
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suggested is impractical at present. However, what we can do is essentially
the converse,i.e., estimate the particle energy density in the trapping region
on the basis of magnetic storm data.

Wé shall first try to estabiish where in the earth's field the maximum
concentration of particles occurs during magnetic storms. A lower limit of
a = 1.2 (1200 km above the surface of the earth) is easily established since
below this altitude particle density increases very rapidly (Johnson, 1960),
and significant concentrations of charged particles have been observed only
down to about 1000km (Van Allen, Ludwig, Rey and McIlwain, 1958). An upper
limit éf a £ 4 can be inferred from cosmic ray cutoff experimehts (Kellogg
and Winckler, 1961). Another line of evidence to justify a still lower upper
limit is the présence of harmonics higher than the first in magnetic éform date
obtained in low and middle latitudes (Slaucitajs and McNish, 1936), (Chapman
and Bartels, 1940). The P, (cos @) and Pi (cos ©) terms in the radial and
transverse components respectively dominate always, although,as Chapman and
Bartels point out, the higher harmonics disappear for all practical purposes
after the first 10 hours or so of the storm. In Figures (4) and (5) we see that
the higher harmonics afe always relatively small and are only importanﬁ when
a £ 2.5. Thus if they are to show up at all in the magnetic records, the
majority of the trapped particle energy must reside on dipole shells for which
1.2 £ a £2,5. The total external contribution to the magnetic field at the
surface of the earth fran storm time particles is shown in Figure (?) (after
Slaucitajs and McNi;h, 1936). At low latitudes the horizontai component is
seen to be essentially constant,and it is at low latitudes that we should expect
the trépped particles to play the dominant role‘in establishiﬁg the storm time
field. In Figure (5) we see that ItOCIHt is essentially constant only when

1.7 £ & £ 2.0. Thus it would appear that the majority of geomagnetically trapped
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particles which produced the magnetic storm field are trapped on dipole
shells for which 1.3 % a £ 2.5 with a maximum on the dipole shell with
a® 1.7.

To obtain an order of magnitude estimate of the particle energy
density we assume that the equatorial particle energy density is uniform on
the intérval 1.6 £ a4 2.3 and the pitch angle distribution is modified
isotropic. A typical value of the horizontal component of the magnetic
disturbance at the equator is lO"3 gauss. Since U¥ = H Bo/bgz:lti, we have

t
6 3
U¥ = 2 x 107 ergs/em’. (The earth's magnetic field energy density at

‘= 2 is 2 x 107 ergs/cm?.) If we assume all the particles are 5 kev
electrons, the flux density is 6 x lO:Ll electrons/cm2 sec. Since observa-
tional results are still somewhat unsettled, any conclusions fhat might be
drawn f g;cnmparlson with our results would be of questionable value.

gésummary our principle results are the following. (1) Particle
motion around the equatorial plane in the trapping region is the Principal
source of magnetic field due to trapped particles. (2) The magnetic field
throughout the earth due to particles trapped on dipole shells for which
a > 2.5 is essentially uniform. (3) It seems likely that the majority of
particles responsible for magnetic storms are trapped on dipole-éhells for

‘which 1.3 £a £ 2.5 with a maximum‘concentration of particles around the

dipole shell with a=~ 1.7.



IV. APPENDIX A
Numerical Integration of Magnetic Field Components

The integrals which repfesent the magnetic field components,in general,
must be evaluated on an automatic digital computer. In Appendix A we rewrite
(42), (43), (56), and (57) in a more tracteble form for machine calculation.

First,in the case of the drift current integrals, Equations (42) and (43),
we observe that the coefficient of P:; (cos ©') in bn is an even function of @'.
Thus bn is an odd function of @' for even n and an even function for odd n.
Because the limits of integration of the inner integral are symmetric about
©' = n/2, only the terms with n odd contribute to the integral, a result that
shouldfbe anticipated from the symmetry of the sources about the equatorial
plane. A further consequenée of the odd-even properﬁ—ies of the integrand is
that it is necessary to integrate only on the interval ( 7 (a), n/2), ﬁhence
doubling the result gives the value of the desired integral.

Let

2
S a.?:(l-&—co’.'«@') n 2.
NN daun g t—m——————ed X+ T X
D(a)e) ¢ 9(/+\3w’4«’“6')1 ”"m( 3 ) (A1)
Then the components of the disturbance field due to the drift motion of the

trapped particles are

(TN /a2
%
Hﬂ—z- :4477’57 Jﬁ(a) JaJ S, de’ (A2)
° a, 7(a)
and
. Ay Tf/l
U — i
f, = l‘ﬁfﬁ—[p(&)da'{ S, ds (A3)
* a, 7(4)
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where
1
m-t Do (e )
Se=be)) AT Bl o) ()
and
7 1
- - 1
| m) P (coe 9')
St=D(69')Z7xﬂ' ﬁ&(we} (A5)
(am o)
To evaluate the gyration integrals, Equations (56) and (57), we must first
subdivide the trapping region. Referring to Figure (6) we see that the limits
2 2
of the r' integration in region R2 are al sin o' £ r' < a2 sin ©'y whereas

5 T < r' < 85 sin2 6'. The ranges of ©' in the regions Rl’

i and
1an nd R atm

R., and R, are respectively

2’ 3
Nag) £ 0 £ 7(a))
70) 46" & T -7(a)
m-yla)ys 8'£T-7(a,)

If we measure distances in units of earth radii, interchange integration and

summation, and resort to arguments similar to those used to evaluate the drift

current integrals, we have

7(a,) a,4n’ 6’
2 %t ,
H = 877 u da'f ‘};A)L
" 3 301,7(41) R
T T’/J_ ﬂpdl/‘nie'
L
g U oJ‘ '
e B»/J”" L Tada (46)
°" yla,) a4 B
and
20, daans’
2 (¥
Hté- ?\;7 : jJe’J TtJ')L’ 2
801 '7\/!21) j)"t“, Wa d:m 9

g2l J Jﬁ'f T, dr (A7)
2 BT 7)) a,mmde’
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where

o= e0ie)) m (2B (aes) By (cn) (48)

and

7 m-!
n N\ pt
T.=c,e)y (—,:> B (o) P (28) (49)
CETE N
The iterated integrals are evaluated by a twofold application of Simpson's
rule. Each iteration is done with k subdivisions of the interval and then
with 2k subdivisions of the interval and the results compared. This process

is repeated until successive estimates of the double integral agree to

within one percent.



V. APPENDIX B
Solution of Poisson's Equation in Source Free Space

In Appendix B we suspend the convention of using primes to refer to soufce
points and use primes instead to denote differentiation with respect to r. By
writing the.potential.fl and V° M in terms of Legendre polynomials, the

problem of solving Poisson's equation

in a source f}ee region of space is reduced to the problem of solving an ordinary
second order differential equation. The complete solution of (Bl) is conveniently
dealt with in two parts by construction a sphere centered st the origin with a

1 =
radius r rat

' For the present we are interested only in the solution inside

the sphefe. .Let

V-t’l=§ I (2 Pa (coa0) (B2)

and meo
—(2 :2 hm.(-))') Pm(Wa) (BB)

n=o

Inserting these expressions in (Bl) end equating coefficients of P (cos-©) gives

moog! AGED) -
n
A particular integral of the reduced equation is r . Now let h = rno(r) and
n

substitute this in (B4). The result is

0’"+_;'L_(m+l)o"=—ifl"— (B5)
Y S

or

29.
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am+i m+ 2
(o'2*"") = g, 2 (86)
Thus the first integral is
-] .
2
q_lﬂl(mw) “7‘”“_ gm(v> Vm+ JV +C, (B7)
»
A quadrature gives
oo
m-rl < |
T=47 WJ?M (Vv V—zm-m.xm'{'ci (88)

Oon interchanging the order of integration and integrating once we have

mtd | | c !
o= am+i ‘[-%M(V) [}.‘}MH - vzm.-p]"v' a#:-H LEF + < (B9)
and so
oo
- ~m=t me2 ymr A j
by =4 R ng(v)v dv = A2 g, (v
R
¢ mmel » (B10)
c
Py + C R

As longas r<r e’ the integrals include all of the magnetic sources and are
atm

therefore consfants. Now to satisfy the condition that the potential be bounded

near the origin, we choose cy so that the first and third terms cancel. Further-

more, if we define the potential at the origin to be zero, then ¢, = 0 and

b = - 111:; J?m“) vy (B11)
Since 77—7,(4.)
gm:_mi-o—/J v-H &(mg)MﬁAB (B12)
79(e)
we have
TT—)[{A) )
b = :.n'f laf v- P’“_(,We)we dx (B13)
/Lm
() 2,

forr £ r .
°= atm



VI.

TABLES
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Teble la. I = H BO/‘yU* for 10° steps of colatitude ©. H,
r .

is the radial component of magnetic field at the
surface of the earth due to particles trapped on
field lines whose equatorial radii are between a
and & + 0.1 (measured in earth radii) for the range
1.3 a L4.0. The equatorial particle energy
denslty is uniform and the pitch angle distribution
is modified isotroplec. See the text for definitions
of B, 7, and U¥. The entries a E b are read as

ax 1ob, e.g., =l.48E 0L = -1.48 x 10%.
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30,

Teble 1. I =H 3 [yu* for 10° steps of colatitude o.
(o] -

Ht is the transverse component of magnetic field

at the surface of the earth due to particles
trapped on field lines whose equatorial radii
are between a and a + 0.1 (measured in earth
radii) for the range 1.3 a L.0. The
equatorial particle_energy density is uniform
and the pitch angle distribution is modified
-isotropit, See the text for definitions of B.,

y, and U*.  The entries & E b are read as

a x lOb,'e.g., -1L.WE 01 = -1.48 x 10™.
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Geometry of the idealigzed magnetic field of the earth and
the helical trajectory of a trapped particle. The
geomagnetic north pole points in the negative z direction.




Figure 2.
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An element of ring current of density j(a, ©')
moving westward around the earth. The geo-

magnetic north pole points in the negative z
direction.
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Cosine of the equatorial pitch angle of particles which mirror
at the top of the atmosphere (1200 km) as a function of the

equatorial radius of the dipole shell on which the particles
reside.



Figure k4. I =E B /yU* as a function of colatitude © where H,
(o]

is the radial component of the magnetic field at the surface
of the earth due to particles trapped on field lines whose
equatorial radii (measured in earth radii) are between a
and a + 0.1. Ir 1s plotted for 1.53< a £ 2.5 in steps of

0.2. The equatorial particle energy density is uniform
and the pitch angle distribution is modified isotropic.
Bo’ v, and U* are defined in the text.

bo.
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Figure 5.

L2,

It = Bo/yU* as a function of colatitude © where Ht is

the transvéerse component of magnetic field at the surface
of the earth due to particles trapped on field lines
whose equatorial radii (measure in earth radii) are

between a and a + 0.1. It is plotted for 1.3 4 a £ 2.5

in steps of 0.2. The equatorial particle energy density
is uniform and the pitch angle distribution is modified
isotropic. Bo’ v, and U¥ are defined in the text.
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Figure 6. Subdivision of the trapping region for
integration purposes.
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Figure 7. Total external contribution to the average differences in
magnetic intensity for disturbed minus quiet days, 1927
(after Slaucitajs and McNish, 1936).
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